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this reason and also based upon the fit (15), we are 
inclined to conclude that available p—p data are not so 
close to the asymptotic region as the -x^—p data for the 
same available momentum range. We recall that the 
model underlying the asymptotic forms (14) predicts5 

no shrinkage in the forward peak of high-energy elastic 
scattering. Therefore, we understand at least qualita
tively the reason why the recent experimental data10 

indicate no shrinkage in ir±—p scattering, but appreci
able shrinkage in p—p scattering. 

If one combines the fit (15) with (13), one can esti
mate a deviation from the optical point as 

|Re^(^)/Im4(^)|2c-62A--l% (15) 
10 K. J. Foley, S. J. Lindenbaum, W. A. Love, S. Ozaki, J. J. 

Russel, and L. C. L. Yuan, Phys. Rev. Letters 10, 376 and 543 
(1963). 

I. INTRODUCTION 

ANALYSES of the binding-energy data for the 
hypernuclei with A^3 have been made to deter

mine characteristics of the A-nucleon interaction.1-4 Un
certainties in these analyses have precluded the deduc
tion of a complete set of parameters characterizing these 
interactions; in particular, it has not been possible to 
establish the presence of A-nucleon-nucleon three-body 
interactions. When three-body interactions have been 
neglected, these analyses have led to the specification of 
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at the lab momentum 10 BeV/c for ^—p scattering. 
This figure violently disagrees with 23±10%, a figure 
suspected in a recent report.11 The same estimate gives 
a deviation of 13% for p—p scattering at the same lab 
momentum. 

We remark finally that all our arguments are valid 
also when the particles have spins. Our arguments then 
apply individually to the amplitudes with the spin 
directions specified and the corresponding total cross 
sections. Therefore, our arguments apply also to the 
spin-averaged ones. 

We thank Professor L. Van Hove for pointing out an 
error in our earlier version of this paper. 

11 S. Brandt, V. T. Cocconi, D. R. 0 . Morrison, A. Wroblewski, 
P. Fleury, G. Kayas, F. Muller, and C. Pelletier, Phys. Rev. 
Letters 10, 413 (1963). 

parameters characterizing central two-body 5-wave 
potentials which include the effect of possible tensor 
components.1-3 The resulting two-body potentials are 
strong and highly spin-dependent. It has been noted 
that the deduced spin dependence depends critically 
upon the assumption that the effect of three-body inter
actions is negligible in the binding of hypernuclei.1'4-5 

Bodmer and Sampanthar4 have recently made a quanti
tative connection between the assumed strength of 
three-body potentials of the form 

(T»"e*)(«r'.o*)7(Ri>R,,RA), (1) 

and the spin dependence of the corresponding two-body 
interactions required to account for the binding energies 
of the lightest hypernuclei. [In (1), 1, 2 and A denote the 
coordinates of the two nucleons and the A particle, 
respectively.] Previously, Weitzner5 had similarly deter
mined the required strength of a potential of the form 

«H. Weitzner, Phys. Rev. 110, 593 (1958). 
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The two-pion-exchange contribution to the three-body A-nucleon interaction is derived from a static 
model and also from covariant perturbation theory. It is found that the local part of the potential cal
culated by the latter method is similar to that part of the static-model potential which corresponds to 
the formation of lambda-antisigma pairs in intermediate states. This potential is noncentral and has the form 
(/c1,/c2)(o,1Ti)(a2T2)/(/'i/2), where o1* and T1' are the spin and isotopic-spin operators for the two nucleons, 
and ri and tz are the A-nucleon separation vectors. An estimate is made of the importance of this potential 
in the binding of the hypertriton by calculating its expectation value with respect to hypertriton wave func
tions corresponding to two-body interactions with hard cores. In these calculations, the three-body potential 
is found to contribute less than 5% of the expectation value of the total A-nucleon interaction. 
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FIG. 1. TPE diagrams of the type which contribute to the three-
body A-nucleon potential in nonrelativistic perturbation theory. 

(1) corresponding to an assumed spin-independent two-
body interaction. 

In the absence of phenomenologically determined 
three-body potentials, estimates of three-body inter
actions have been made on the basis of meson field 
theory to indicate the extent to which the neglect of 
these interactions may be justified in analyses of hyper-
nuclear binding-energy data.6,7 It is the purpose of this 
paper to present such a study of two-pion-exchange 
(TPE) contributions to the A-nucleon three-body 
interaction. 

The lowest order pion-exchange process which can 
contribute to a charge-independent A-nucleon inter
action involves the exchange of two pions. The TPE 
process leads to a two-body interaction when both pions 
are exchanged between the A particle and a single 
nucleon, and it leads to a three-body interaction when 
the pions are exchanged between the A particle and 
two different nucleons. These lowest order pion-
exchange contributions to both two-body and three-
body A-nucleon interactions are of the same order in the 
pion-baryon coupling constants. It is therefore possible, 
a priori, that the A-nucleon three-body potential may 
play a significant role in determining the binding of 
hypernuclei. The range of the interaction between the 
A particle and each nucleon in the TPE three-body 
potential is approximately twice the range of the TPE 
two-body interaction; this would be expected to enhance 
the relative importance of the three-body interaction. 
On the other hand, it is expected that the probability 
will be small that the three particles are sufficiently close 
together in a hypernucleus for the effect of the three-
body interaction to be appreciable. These range and 
correlation effects tend to counteract one another, so 
that the relative importance of two-body and three-body 
TPE interactions in hypernuclei is not obvious on 
general grounds. 

Two-pion-exchange contributions to A-nucleon three-
body potentials have previously been calculated by 
Weitzner,5 Spitzer,6 and Bach7 by methods which are 
equivalent to nonrelativistic perturbation theory with 
the baryons treated as fixed pion sources. These TPE 

6 R. Spitzer, Phys. Rev. 110, 1190 (1958). 
7 G. G. Bach, Nuovo Cimento 11, 73 (1959). 

potentials correspond to diagrams of the types shown 
in Fig. 1. Weitzner5 obtained a potential of the form (1) 
by consideration of the pion-pair interaction represented 
by diagrams of the type of Fig. 1(c). Spitzer6 calculated 
the contribution of diagrams of the type 1(a) to the 
three-body potential, and Bach7 calculated the contribu
tions of all diagrams of the types shown in Fig. 1. 
Spitzer and Bach obtained different expressions for the 
contribution corresponding to diagrams of the type 1 (a); 
and their estimates of the contribution of these poten
tials to the expectation value of the total A-nucleon 
interaction in the hypertriton were quite different. 
Moreover, Bach and Weitzner obtained different forms 
for the potential corresponding to the diagrams of 
type 1(c). 

On account of the disagreement between the results 
of previously published calculations of three-body 
potentials, we calculated the TPE three-body potential 
corresponding to diagrams of the type of Fig. 1 in non
relativistic perturbation theory. This calculation, which 
is sketched in Sec. II, led to potentials which agree with 
those obtained by Bach apart from mass-dependent 
multiplicative factors. 

The main part of this paper is concerned with a calcu
lation of the TPE three-body potential on the basis of 
covariant perturbation theory (Dyson 5-matrix for
malism) in which the baryons, as well as the pions, are 
treated field theoretically. This calculation is described 
in Sec. Ill , where it is shown that the leading term in 
this three-body potential for large separations is essen
tially the same as that calculated in Sec. II, correspond
ing to pair diagrams of the type of Fig. 1(c). The expec
tation value of this three-body potential in the 
hypertriton is calculated in Sec. IV, and the three-body 
potential is found to contribute less than 5% of the 
expectation value of the total A-nucleon interaction. 
The results of this paper are discussed in the final Sec. V. 

II. THREE-BODY POTENTIAL FROM 
A STATIC MODEL 

In order to use a static-model approach for a system 
of nucleons and hyperons, the initial step is to define a 
model which is, in some sense, a nonrelativistic limit of 
the relativistic theory. For this purpose, it is convenient 
to extend the field-theoretic generalization of the Foldy-
Wouthuysen transformation, carried out by Osborn8 for 
a system of nucleons, to the case in which A and S 
hyperons are included. We assume a universal pion-
baryon interaction and even relative A—2 parity.9 The 
corresponding interaction Hamiltonian density is then10 

8 R. K. Osborn, Phys. Rev. 86, 340 (1952). 
9 Evidence that the A—2 parity is, in fact, even is given by 

R. D. Tripp, M. B. Watson, and M. Ferro-Luzzi, Phys. Rev. 
Letters 8, 175 (1962). 

10 The inclusion of the term fesirtfmXifcs-^ yields additional 
interactions, all of which are bilinear in the 2 field operators; such 
terms do not play a role in a calculation of the fourth-order 
A—N—N potential. 
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3tl (X) = gNN*$Nj5l • #JV _ 
+ ^ A S T ^ A 7 5 ^ * tyL+gh2*$W # A . (2) 

Following the example of Osborn,8 one frees the Hamil-
tonian of odd operators to order \/M (M=mass of any 
baryon) by successive canonical transformations. In the 
first of these [exp(iSi)3C(x) exp(—iSi)], Si includes the 
terms 

/ ' 
MA+MS 

J 3 ^ t t s + 7 5 - # A , 
— IgAZ 

M A + M S fzJ 
<Pa^A+76#'<!s, 

which serve to eliminate the second and third terms in 
(2) and which introduce gradient and pion-pair inter
action terms, etc. In this way one obtains the trans
formed (total) Hamiltonian density 

X' (x) = M 8 ( J f * + P*/21f w > M - M 8 (MA+ p 2 /2M A )^A+ V • P (Mz+tf/lMx) fc+ (*2+ V^ • V?5+<42)/2 
+ (gNNJ/2M N)*N W*N+ [gA2,V (JfA+Jfj!)>A W A + [gAS.2/ ( M A + ^ s ) ] ^ ^ «0 ( ^ <!S) 
+ (gNN./2MN)ltrNUL- (y*-fflN+ (gAS./2)[l/2MA+l/(ili'A+MS)>At(S- V?S) • lfc 
+ (tgAZ,/4)(l/AfA-l/lfj)^AV.(l!-p)tt2+(gAZ./2)Cl/2Jf2+l/(JfA+ilf2)]t|rzt.(S.V^A 

+ (*f W 4 ) (1/if z - 1/i^ A) to* • * (S • P)^A . (3) 

In (2) and (3), ^^, \f/A and t{rs denote baryon field 
operators, and $ and sc represent the pion fields and 
their conjugate momenta; and 

•C D (4) 

is expressed in terms of the Pauli spin operators <r. 
In a static model, the terms involving the momentum 

operator p in (3) are neglected, and the baryon field 
operators are replaced by creation and destruction 
operators for baryons at fixed positions.11 It should be 
noted that, if the terms in (3) which involve S • p were 
retained, they would lead to velocity-dependent con
tributions to the potential. The calculation of the 
A—N—N three-body potential, using ordinary per
turbation theory, is straightforward. The TPE contribu
tion breaks up naturally into three parts, which corre
spond to diagrams of the types shown in Fig. 1. Dia
grams of the type 1 (b) (bare diagrams) are characterized 
by an intermediate state with no pions present.12 

The integrations required in obtaining the potential 
contributions corresponding to diagrams of the types 
of Figs. 1(a) and 1(b) are not difficult if the 2—A mass 
difference is neglected relative to the pion energies in the 
energy denominators.13 With this approximation, we ob
tained results identical with those of Bach7 when the 
mass modification, mentioned in Ref. 11 was made. 
Since the 2—A mass difference appears explicitly in the 
denominator of the expression for the potential corre
sponding to the bare diagrams, this modification should 

11 The omission of the interaction terms involving p results in a 
Hamiltonian which is no longer Hermitian. The Hamiltonian can 
be made Hermitian, if desired, by modifying two of the coefficients 
in (3) Jin the following way: 

1/(MA+M2). 
Z1/2MA+ V (MA+M?) 3/2\ 
Il/2M2+1/(MA+M2)y2f 

12 One can show that the use of the Tamm-DancofI method in 
conjunction with this model leads to the same result as that ob
tained in ordinary perturbation theory. The bare diagrams appear 
regardless of whether or not one iterates the energy in the inter
mediate-state Green's functions. 

13 This is a rather severe approximation. 

not be regarded as an approximation in which Ms is set 
equal to MA. 

For the potential corresponding to diagrams of the 
type of Fig. 1(c), we obtained 

F C = M ( S W / 4 7 T ) (gA^2/4ir) ( M 2 / 2 M ^ ) [ M / ( M A + M S ) ] 

X ( l + r 0 ( l + r , ) r ^ / f i V 2
3 , (5) 

where ri and r2 are the separation vectors between the 
A-particle and nucleons 1 and 2, respectively, in units of 
the pion Compton wavelength /x-1.14 The expression (5) 
agrees with the result obtained by Bach7 for these dia
grams, except for a numerical factor 8MA2/M(M"A+-M"S) 
= 31, by which his result must be multiplied in order to 
obtain (5). Bach7 also multiplied his result by a damping 
factor to account for possible pair suppression due to 
radiative corrections. Apart from the multiplicative fac
tor in (5), our work corroborates Bach's results rather 
than those of Spitzer6 and Weitzner.5 

III. THREE-BODY POTENTIAL FROM 
THE S MATRIX 

The fourth-order A-nucleon three-body potential is 
derived in this section by means of the covariant 
5-matrix formalism. In this approach, the full rela-
tivistic interaction Hamiltonian (2) is used, and the 
baryons are not considered to be static, but are ulti
mately subjected to the condition p2/M2<<Cl. We shall 
actually retain only the local part of the three-body 
potential obtained by this method. 

The ^-matrix method of defining a potential is based 
upon choosing a potential which reproduces the same S 
matrix as the one calculated from field theory.15 The 
elements of the field-theoretic T matrix, defined by 

Sfia= dfia-2iriB(Efi-Ett)TPa (6) 

are identified with the elements tpa of the transition 
14 In Eq. (5) and in the remainder of this paper we shall use the 

the units # = e = l. 
15 See, for example, J. M. Charap and M. J. Tausner, Nuovo 

Cimento 18, 316 (I960). 
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stants then leads to the relation 

FIG. 2. TPE diagrams which contribute to an ^-matrix calculation 
of the A-nucleon three-body potential. 

operator in ordinary quantum mechanics. The integral 
equation connecting the latter operator with a potential 
can be iterated to obtain t in terms of V. A series ex
pansion of t in powers of the pion-baryon coupling con-

W4)=JV4)+E 
V^Vya^ 

y Ea—Ey-\-ie 
(7) 

between the terms of fourth order. Since there is no 
charge-independent A-nucleon or A-two-nucleon poten
tial of second order in the pion-baryon coupling con
stants, the second term on the right-hand side of (7) does 
not enter into a calculation of the T P E A-nucleon three-
body potential; and the off-energy-shell matrix elements 
in (7) play no role in this case. 

The T P E diagrams which contribute to the 5-matrix 
calculation of the A-nucleon three-body potential Vz are 
shown in Fig. 2.16 With the interaction Hamiltonian (2), 
we obtain the following matrix element corresponding to 
the sum of these diagrams: 

{S&Z 5 S2q2,Siqi | S ( 4 ) | Pl^l)P2^2 ; P3̂ 3> = gNNT?gM* 
( 2 T > LE(qi; 

MN'MK2 -11/2 

)E(q2)E(q3)£(p1)E(p2)E(p3)J 

f « [ ^ S 2 (q2 )n75^ r 2 (P2 ) ] [^ s l (q i ) ^75^ r i (P i ) ] 
X8M(q1+q2+qz-pi-p2-ps) Z 

l « C ( ? 2 - ^ ) 2 - M 2 ] [ ( ? i - ^ ) 2 - M 2 ] 

X £S3(q3)Y5f 
7 * Zp2—q2+pz]+Mx y • [_pi— qi+pz]+Mz 

tp2-q2+psJ-Mx2 Ipi-qi+PzJ-Mi? 
J7BWr3(p8)J| . (8) 

In Eq. (8) the ur(p) are eight-component spinors, characterizing the spin and isotopic-spin states of the nucleons, 
and the operators * and 75 within the nucleon spinor products are understood to be generalized to the direct-
product spinor space. The cor(p) are four-component A-particle spinors. 

The elements of the T P E T matrix corresponding to the diagrams of Fig. 2 can be obtained by dividing (8) by 
— liri and dropping the energy-conserving part of the four-dimensional delta function, in accordance with Eq. (6). 
Following the remarks made in connection with Eqs. (6) and (7), the elements of this T matrix (in the nonrela-
tivistic limit) are then taken to be the matrix elements of the T P E potential F3 . In order to obtain a potential 
appropriate for use in a Schrodinger equation, it is convenient to express the small spinor components in (8) in 
terms of the large components. The transition to the nonrelativistic limit is then made by neglecting terms of higher 
than second order in | p\/M and expressing the large spinor components in terms of two-component Pauli spinors. 
We obtained that part of the resulting expression which leads to a local potential by neglecting the A-particle 
momentum p3 and the momentum sums (q»+p*) for i=l, 2, while retaining the momentum transfers (q»—p*). 
These approximations imply that the corresponding potential Vz will be valid only for baryon kinetic energies 
which are small compared to the 2—A mass difference. These steps lead to the following expression for the mo
mentum-space representation of the potential operator in the spin and isotopic-spin space of the baryons: 

F 3 ( q i - P i , q 2 - p 2 ) = -lgNN^«V^)K2MNy-]{J*^) 

O 2 • (q2-p2)][<r1- ( q i - p i ) ] 

C(q2-p2)2+M2]C(q: 

• (q i -P i ) J r 

i-Pi)2+M2]L 

MZ—MA MX—MA 

(d2-V2)2+Mx2-MA2 (tii-ViY+MJ-MA2-
(9) 

I t should be pointed out that the singularity in the 2-particle propagator, corresponding to the S-particle being on 
its mass shell, disappeared in the transition from (8) to (9) when the nonlocal terms in Vz were discarded. 

The local A-nucleon three-body potential in configuration space is the Fourier transform of (9) with respect to the 

16 The exchange-scattering diagrams, which are the same as those in Fig. 2 with qi and q2 interchanged, need not be con
sidered in a calculation of the potential. 
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two nucleon momentum transfers k*= (q»—p»): 

Vz=n(gNNJ/br) (gA2.2/47r)[/x3(Ms-iif A ) / ( M S
2 - M A 2 - M 2 ) ( 2 ^ ) 2 ] ( . ^ 2 ) (er1.^) (<r2.r2) 

X { ( l + r 2 ) (e - ' 2 A2 3 ) [ ( l+n) ( ^ ' i / f f l - (l+9fTCfi) (exp(-9fTCfi)/ri»)] 

+ ( l + r 1 ) ( ^ ^ / r 1
3 ) [ ( l + r 2 ) ( e - ^ A 2 3 ) - (l+9nr2)(exp(-£fTlr2)A2

3)]}. (10) 

In (10) the interparticle separations have been expressed 
in units of the pion Compton wavelength, and 

9fR?=(Af2«-AfA2)//*2. (11) 

The potential (10) is to be compared with the static-
model potential discussed in Sec. I I . The S-matrix 
potential is similar to the potential Vc given in Eq. (5). 
The differences are the terms in (10) which contain 9TC 
and the additional /A2 in the denominator of the over-all 
coefficient in (10). The terms involving 9TZ arise from the 
momentum-transfer terms (q»—p*)2 in the denominators 
of (9); the static-model potential (5) corresponds to the 
neglect of these terms with respect to (Ms2—MA2) , 
which is tantamount to neglect of the recoil of the inter
mediate 2-particle. (We have already neglected p3.) 
Since these terms involving Sfll are of opposite sign from 
the static-model terms, it is clear that the recoil of the 
intermediate 2-particle tends to decrease the strength 
of the three-body potential. Since 9H^3 , however, these 
recoil terms contribute very little in the region of large 
A-nucleon separations, where the T P E potential can be 
expected to be valid. 

The static-model potential Vc results from the 
presence of the pair term J / ^ A ^ 2 in the transformed 
Hamiltonian (3). Since this term accounts (approxi
mately) for the effect of 2 particles in intermediate 
states, the discussion of the preceding paragraph indi
cates that the S-matrix potential (10) arises primarily 
from intermediate states which contain A—2 pairs. 
There is some reason to believe that corresponding pair 
contributions may be suppressed in the nucleon-nucleon 
interaction by higher order radiative corrections17; how
ever, there is as yet no experimental evidence for A—2 
pair suppression. Moreover, the fourth-order nucleon-
nucleon 5-matrix potential derived by Gupta18 (without 
pair suppression) has been used by Breit et al.19 to im
prove the theoretical fit to nucleon-nucleon scattering 
data. I t therefore appears that the degree of pair sup
pression is in doubt even in the nucleon-nucleon inter
action. Considering the uncertainty which exists on the 
question of possible pair suppression, one can conclude 
that, in the absence of significant damping, the main 

17 For a discussion of pair suppression see, for example, R. J. N. 
Phillips, Rept. Progr. Phys. 22, 623 (1959). 

18 S. N. Gupta, Phys. Rev. 117, 1146 (1960). 
19 G. Breit, K. E. Lassila, H. M. Ruppel, and M. H. Hull, Jr., 

Phys. Rev. Letters 6, 138 (1961). See also G. Breit, Rev. Mod. 
Phys. 34, 766 (1962). 

contribution to the A-nucleon three-body potential for 
large separations is the V$ given in Eq. (10). 

IV. EFFECT OF THE THREE-BODY POTENTIAL IN 
THE BINDING OF THE HYPERTRITON 

In this section we calculate the effect of Vz in the 
hypertriton to investigate whether the presence of the 
potential (10) would significantly affect the determina
tion of the A-nucleon two-body potentials in an analysis 
of this hypernucleus. 

Bach7 has previously estimated the contributions to 
the expectation value of the total A-nucleon interaction 
in the hypertriton which arose from the static-model 
three-body potentials corresponding to the diagrams of 
Fig. 1. His results indicate that the presence of the three-
body potentials which he considered would not greatly 
modify the two-body potentials deduced (without three-
body potentials) from the binding energy of AH3 . Bach's 
estimate of the effect of the static-model potential (5) 
was, however, incorrect: He took the expectation value 
of (5) to be zero for a hypertriton wave function with nu
cleon correlations. Although the expectation value of (5) 
is zero for a wave function having no nucleon-nucleon 
spatial correlations, its expectation value is not zero for 
a realistic hypertriton function with correlations. The 
over-all (mass and coupling constant) coefficient on the 
potential (5) is much larger than the over-all coefficients 
on the potentials which correspond to the diagrams of 
Figs. 1(a) and 1(b), being about two orders of mag
nitude larger than the former and about an order of 
magnitude larger than the latter. The neglect of (5) in 
an estimate of the effect of static-model three-body 
potentials could therefore be a significant omission. As 
we have previously noted, the static-model potential (5) 
is essentially the same as the 5-matrix potential (10) in 
the region of large A-nucleon separations where the T P E 
potential can be expected to dominate the interaction. 

Our estimate of the effect of the potential (10) in the 
hypertriton will be made on the basis of perturbation 
theory, the unperturbed wave function being one deter
mined in an analysis of the hypertriton binding energy 
in terms of two-body potentials. Such wave functions 
have been obtained for potentials both with and without 
hard cores. 3 ,2°'21 For the estimates of this section, we use 
the hard-core wave functions of Downs, Smith, and 

20 R. H. Dalitz and B. W. Downs, Phys. Rev. 110, 958 (1958). 
2 1B. W. Downs and R. H. Dalitz, Phys. Rev. 114, 593 (1959). 



2732 J . D . C H A L K , I I I , A N D B . W . . D O W N S 

16.0 

14.0 

12.0 

10.0 

8.0 

6.0 

4.0 

2.0 

0.0 

1 

J f(r) = - L " 
rz 

Fir) .|.7ie-""'. a j e ™ 

1 
\ 

\ 
^^"v^ 

i r~~ • — i 
0.0 1.0 2.0 3.0 

FIG. 3. The function f(r) and the function F(r) appropriate 
to a hard-core radius of 0.4 F. 

Truong3 (referred to as DST hereafter). This choice of 
hard-core functions serves to exclude part of the region 
in which the validity of the TPE potential (10) is 
doubtful and in which other exchange mechanisms can 
be expected to make significant contributions. Our 
calculations will therefore represent an estimate of the 
effect of the potential (10) in the regions outside the 
hard cores rather than an estimate of the total three-
body potential. Moreover, we shall neglect, for sim
plicity, those terms in (10) which involve the mass 
difference quantity 9fIL The potential without these 
terms will be denoted PY, and its use will lead to 
an overestimate of the effect of the TPE three-body 
potential (10). 

The hypertriton wave function used by DST can be 
expressed in the form22 

with 
^=iV-w/(n)/(r2)«(f8)£x, 

r<D /W=o, 
= exp[-a(r-Z?)]-exp[-i8(r-Z?)], r>D 

g(r) = 0, r<D 
= exp[-Y(r-I>)]-exp[-5(>— £>)], r>D 

appropriate to two-body interactions with a hard core 
of radius D. The factor N~m normalizes the wave func-

(12a) 

(12b) 

(12c) 

22 A subsequent variation calculation by D. R. Smith and B. W. 
Downs (to be published) in terms of a 10-parameter trial function 
indicated that the wave function (12) provides a very good 
representation of the hypertriton for the calculation of the binding 
energy. See also D. R. Smith, thesis, University of Colorado, 1963 
(unpublished). 

tion (12a) to unity; £ is the singlet iso topic-spin function 
for the two nucleons; and x denotes the hypertriton 
spin function, in which the spin state of the two nucleons 
is the triplet state. Only the nucleon-nucleon part of the 
spin function plays a role in determining the expectation 
value of the three-body potential (10). The optimum 
variation parameters a, p, y, 5, obtained by DST for 
two-body potentials with hard-core radii D=0A and 
0.6 F, are listed in Table I along with the corresponding 
values of thejriormalization integral N and the expecta
tion value (VAN) of the average two-body A-nucleon 
potential. In Table I, b° designates the intrinsic range 
of the attractive well in VAN>2Z 

With the wave function (12), the expectation value 
of the modified three-body potential V% can be ex
pressed as 

(F,')=ri^, (13a) 

r = M (4TT2/3) (e-™/N) (g W / 4 T T ) (gAS.
2/47r) 

X^-^Xcr1 .*2) , (13b) 

Ii= I rir2rzdr1dr2dr3 

X[(r1
2+f2

2-f3
2)/2f1f2][(l+f1)A1

2] 

X[(l+f2)A2
2]^-a i ( n- i ) )-6 i ( r 2-D )-c i ( r 3- i ) ) , (13c) 

where the rji are numerical factors arising from the 
square of the wave function (12). In (13c) the radial 
variables r;- and the hard-core radius have been ex
pressed in units of the pion Compton wavelength; the 
parameters ai, Z>4-, a, which are derived from the expo
nential parameters appearing in the wave function and 
in the potential, are then dimensionless. In (13b) the 
normalization factor N has also been expressed in units 
of jit-6. The integration in (13c) is over values of r3- from 
D to oo, subject to the triangular inequalities n+r2^ f 3, 
r2+r^rh rd+fi^r2. 

The integrations required in (13c) cannot be carried 
out in closed form on account of the factors r%2 and r2

2 

which occur in the denominator of the integrand. To 
obtain integrands which lead to closed expressions, we 

TABLE I. Optimum parameters and expectation values 
for DST wave function. 

D 
.(F) 

0.4 
0.6 

(F) 

0.7 
0.3 

a 
(F-i) 

0.325 
0.389 

(3 
(F-i) 

6.94 
11.28 

T 
(F-i) 

0.578 
0.606 

5 
(F-i) 

4.55 
4.79 

N 
(F6) 

288.8 
231.1 

(VAN) 
(MeV) 

-12 .1 
-35 .4 

23 For the hard-core radius D = 0A F, DST reported results for 
potentials with attractive wells having two different intrinsic 
ranges. The expectation values given in Table I do not appear in 
Ref. 3. 
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FIG. 4. The function /(f) and the function F(r) appropriate 
to a hard-core radius of 0.6 F. 

approximate the factors 

/(';)= (l+r;)/tf, 
which appear in the potential (10), by 

(14) 

(15) 

The coefficients Y and Z which we used are given in 
Figs. 3 and 4, which show that (15) provides a very good 
representation of (14) for values of r3- which make 
significant contributions to the integrals (13c). When 
the factors (14) are replaced by (15),24 the integrals to 
be evaluated in (13) are all of the form 

J<o= /*JriJf2^3fiV3e-A^1- I ))-B^2- I )^ c^3- I ) ) (16a) 

or 

I^= / , ^ 1 ^ 2 ^ 3 f 3 3 ^ ( r l - D ) - j B ( r 2 - j D ) " c ( r 3 - j D ) , (16b) 

when use is made of the symmetry of the wave function 
and the potential in the radial variables ri and r%. These 
integrals (16) can be readily evaluated by the technique 
described by DST.3 

With the hypertriton results of DST given in Table I, 
we obtained the following values for the ratio of the 
expectation value of the three-body potential to the 

24 A rough estimate of the error introduced by this approxima
tion was made by evaluating the integrals 

JD 
f(r)e~prdr and 

/ : 
F^e-^dr, 

for values of p representative of the exponential parameters which 
enter in the integrals (13c). In this comparison, the values of the 
two test integrals never differed by more than 5%. 

expectation value of the total two-body A-nucleon 
interaction (for gA2*2/4:ir=gNNr

2/4:T= 15): 

<*Y) 0.046 

0.014 
for D= 

OAF 

0.6F 
(17) 

The relatively small contribution of the three-body 
potential provides a justification for the use of the 
perturbation method which led to (17). In a proper 
variation calculation, the three-body potential should, 
of course, be included from the beginning. The smallness 
of the ratios (17) indicates, however, that the results of 
such a calculation would probably not be very different 
from those given in Table I for the two-body potential 
and in (17) for the three-body potential. 

The smallness of the expectation value of the three-
body potential can be traced to the presence of the 
factor 

C=(r1
2+r2

2~r3
2)/2f1f2 (18) 

in the integrand of (13c). The factor (18) arises from 
the factor (o-1 • ri) (cr2 • r2) in the potential (10) and ac
counts for the attribute of (10) which requires spatial 
correlations between the nucleons in order for the three-
body potential to be effective. Such correlations are 
present in the wave function (12) both because the 
nucleon part (12c) vanishes at the hard core and because 
that function is not constant outside the core. If these 
correlations were not present, the integrals (13c) would 
vanish. If the three-body potential (10) were included 
in a variation calculation from the beginning, the 
principal modification in the perturbation results ob
tained here could be expected to arise from increased 
nucleon-nucleon correlations introduced into the opti
mum wave function by the presence of the correlation 
function (18). A qualitative indication of the effect of 
(18) can easily be obtained from its expectation value 
with respect to the simple wave function 

= p— a (**2+n)— b (r$) ^=0-' (19) 

which is a counterpart of (12) for potentials without 
hard cores. With (19), the expectation value of (18) is 

(e)=Z(b/ay+5(b/a)yi(b/ay+5(b/a)+S']. (20) 

The expectation value (20) vanishes for (b/a) — 0 (no 
nucleon correlations for finite a) and approaches unity 
for (b/a) —» co (complete nucleon correlation for #7^0). 

V. CONCLUDING REMARKS 

The estimates of Sec. IV indicate that the T P E 
three-body potential (10) can reasonably be neglected in 
analyses of the binding energy of the hypertriton. This 
conclusion is even stronger than the comparison (17) 
indicates because the terms involving the mass differ
ence quantity 2HX in (10) were omitted in the calculations 
leading to (17). I t is not obvious from these calculations, 
however, that the three-body potential (10) can also be 
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neglected in other hypernuclei. Since the parameters of 
the two-body A-nucleon potentials have been deduced 
primarily from analyses of AH3 and AHe5,1,2 it would 
appear to be of interest to investigate the effect of the 
potential (10) in AHe5. The spatial correlations among 
pairs of nucleons in AHe5 are stronger than those in AH3, 
and this would tend to increase the effect of the three-
body potential. The same remark applies to very heavy 
hypernuclei (and nuclear matter), in which the average 
nucleon-nucleon separation is smaller than it is in the 
hypertriton. 

The binding energy B of a A particle in nuclear matter 
is currently an object of some interest.25 The importance 
of B stems from the fact that it is determined, in part, 
by the A-nucleon interactions in states with angular 
momentum />0,25,26 whereas the binding energies of the 
light hypernuclei are determined almost entirely by the 
S-wave interactions.1 We estimated the contribution of 
the three-body potential V% to the binding energy B by 
the perturbation technique of Bodmer and Sampanthar,4 

25 For a review of experimental and theoretical estimates of B 
see, for example, B. W. Downs and W. E. Ware (to be published); 
and B. W. Downs, "The Nuclear Well Depth for A-Particles," a 
paper presented at the (CERN) International Conference on 
Hyperfragments, St. Cergue, Switzerland, March, 1963. 

26 J. D. Walecka, Nuovo Cimento 16, 342 (1960). 

in which nuclear matter is treated as a Fermi gas. When 
cutoff factors of the form {1 — exp[—c(r—D)2) are 
taken for each interparticle separation and the nucleon-
nucleon correlation function4,7 P i i ^ i ^ ) / ^ ^ ] 2 *s aP~ 
proximated by an exponential, the result can be ex
pressed in the form (13) with the normalization factor 
(1/iV) replaced by the square of the density of nuclear 
matter p. Since the appropriate p2 is about 10 times as 
large as the values of (1/iV) used here, we obtained a 
result which suggests that the contribution of the 
potential (10) to B may be significant. In fact, the result 
was so large that the perturbation approximations upon 
which it was based may not be justified; and a more 
careful study of this effect will have to be made before 
a reliable statement can be made.27 
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